D-A245 853 - o {
LRRRTHRE

NAVSWC TR 90-46

EXPERT DESIGN ADVISOR

BY STEVEN L. HOWELL, PHILLIP Q. HWANG, AND CUONG M. NGUYEN
UNDERWATER SYSTEMS DEPARTMENT

OCTOBER 1990

Approved for public release; distribution is unlimited.

| NAVAL SURFACE WARFARE CENTER

§Y Dahigren, Virginia 22448-5000 ® Silver Spring, Maryland 20903-5000

92 2 0§ 002
92 - 'Y B 92-03016
TR OE A

NAVSWC TR 90-46

EXPERT DESIGN ADVISOR

BY STEVEN L. HOWELL, PHILLIP Q. HWANG, AND CUONG M. NGUYEN
UNDERWATER SYSTEMS DEPARTMENT

OCTOBER 1990

Approved for public release; distribrution is unlimited.

NAVAL SURFACE WARFARE CENTER
Dahlgren, Virginia 22448-5000 e Silver Spring, Maryland 20903-5000

Chapter

NAVSWC TR 90-46

CONTENTS
Page
INTRODUCTION ..t i e et ettt ettt e e iaanes 1-1
1.1 PROBLEM/SOLUTION i et e eeaenn 1-1
1.2 BACKGROUND i i it et e e e e 1-3
MISSION CRITICAL SOFTWARE INTENSIVE SYSTEMS 2-1
2.1 REQUIREMENTS DESCRIPTIONS 2-1
2.1.1 FUNCTIONAL REQUIREMENTScc0iinun... 2-1
2.1.2 NONFUNCTIONAL REQUIREMENTS 2-1
2.1.3 BACKGROUND INFORMATIONciiiiiinnnn.. 2-2
2.2 DESIGN DESCRIPTIONS ittt i et 2-2
2.2.1 LOGICAL MODEL it 2-2
2.2.2 IMPLEMENTATION MODELc¢iiiiiiinnnnn. 2-3
2.3 IMPLEMENTATIONS it it e e e e 2-3
EDA ENHANCED SYSTEMS ENGINEERING METHODOLOGY 3-1
3.1 STANDARD SOFTWARE INTENSIVE SYSTEMS
LIFE CYCLE MODEL ittt et et et et e e 3-1
3.1.1 PROBLEM DEFINITION0iiiiiminnnnnnn. 3-2
3.1.2 SOFTWARE/SYSTEM DEVELOPMENT 3-3
3.1.3 SOFTWARE SYSTEM MAINTENANCE (CHANGE CONTROL)..... 3-5
3.1.4 SUPPORT ACTIVITIES¢c'iiiiiiitinnnnnnn 3-5
3.2 EXPERT DESIGN ADVISOR METHODOLOGYcuivuinon.. 3-6
3.2.1 SYSTEM CHARACTERIZATION¢cuiiiiiunnnnun.. 3-7
3.2.2 FRAGMENTATION AND DECOMPOSITION 3-9
3.2.3 RECOMPOSITION ittt 3-10
3.2.4 RESOURCE ALLOCATION MAPPINGS 3-11
3.2.5 CODE GENERATIONttt 3-14
3.2.6 AUTOMATION OPPORTUNITY OF METHODOLOGY 3-14
PROTOTYPE TOOLSET IMPLEMENTATION0.¢citiiiunnnnnn. 4-1
4.1 RESOURCE ALLOCATION ADVISOR TOOL, 4-1
4.1.1 SYSTEM REPRESENTATION0.0iuiiriunnn.. 4-2
4.1.2 FUNCTIONALITY.\ttt iieieinnn, 4-2
4.1.3 DISPLAYS and COMMANDSt innn.. 4-3
4.2 EDA ENVIRONMENT i e i it 4-12
4.2.1 SYMBOLICS AND KNOWLEDGE ENGINEERING ENVIRONMENT.. 4-13
4.2.2 VAX AND ADA. e e 4-13
4.3 EDA CAPABILITY e et i 4-13
4.3.1 ALLOCATIONS OF SOFTWARE MODULES ONTO HARDWARE
RESOURCES e e 4-13
4.3.2 SIZE AND PERFORMANCE 4-13

ii

NAVSWC TR 90-46

FOREWORD

The Expert Design Advisor describes a methodology for the development of
large, complex systems, such as Anti-Submarine Warfare systems, involving next
generation mission critical computing resources. This work also demonstrates
that the method is automatable using an artificial intelligence, expert system
shell. The methodology of this system optimizes the design structure and
generates near-optimal allocations of logical design objects onto physical
implementations based on heuristic classes of rules, classes of algorithms,
sets of analytical equations, and sets of probabilistic reasoning. This work
should be of interest to systems engineers and systems analysts.

This work, performed at Naval Surface Warfare Center (NAVSWC), documents
the state of the methodology as of FY90. The methodology is continuing to be
defined and enhanced; further versions will be released in the future as part
of the Engineering of Complex Systems Technology Block.

The project is sponsored by the Office of Naval Technology (ONT) and
NAVSWC's Independent Exploratory Development program. It is a cooperative
effort among NAVSWC, DoD, university and industry communities. Funding is
expected to continue by ONT; this support will allow for the expansion of the
existing effort.

The authors thank CDR Jane Van Fossen (ONT) and Dr. Frankie Moore for
their programmatic support; Teresa Park and university and high school
students Brian Crilly, Fredrick Mayus, and Dan Cornfeld for their technical
support; and Adrien Meskin of Advanced Technology and Research Corporation for
support in preparing this manuscript.

Approved by:

Underwater Systems Department

NAVSWC TR 90-46

CONTENTS (Cont.)

Chapter Page
4.4 EDA USAGE e e 4-14
4.4.1 RAA PROCESS e e e i 4-14 |
|
5 FUTURE PLANS AND DEVELOPMENTt 5-1 |
5.1 METHODOLOGY ENHANCEMENTS AND DEVELOPMENTS 5-1
5.2 FUTURE VERSION OF TOOLSETcit i, 5-1
5.2.1 CONTINUATION OF WORK 0. 5-1
BIBLIOGRAPHY it e e e e e e, 6-1
NOMENCLATURE it e e e e e e e s, 7-1
APPENDIX--SAMPLE ALGORITHM A-1
DISTRIBUTION ... e e e e e e e e e e, (1)
ILLUSTRATIONS
Figure Page
1-1 PROBLEM STATEMENT ittt e e e e e e e e, 1-2
1-2 EDA ARCHITECTURE ittt e e e e e e e s, 1-3
3-1 STANDARD SOFTWARE INTENSIVE SYSTEMS LIFE CYCLE PROCESS 3-1
3-2 EXAMPLES OF TWO VIEWS THAT DESCRIBE A SIMPLE SYSTEM 3-7
3-3 RECOMPOSITION OF A GRAPH i e, 3-10
4-1 SYSTEM CHARACTERIZATION PANELttt e, 4-4
4-2 ALGORITHM APPLIER PANEL it e e e e, 4-8
4-3 CANDIDATE ASSIGNMENT DISPLAY PANELt .. 4-11
4-4 EDA NETWORK e e e e e e e, 4-12
4-5 PRAA TOOL FUNCTIONALITY OVERVIEWttt i, 4-15

Aooesslon Yor

CNTIS GRASI ﬁ;7

DTIN TAR

; ' Unseeunaed Lj
',lkn“b g’ Juet tteat ot
b‘;"!-_nrﬂt ' [
TNGE
’ By e e e
Diatratetton/ n
— - - -

Avatiabllisly Sodes
i TAvatl wdfer

Dlat | special

P\,\

X

—en Y

iii

NAVSWC TR 90-46

CHAPTER 1

INTRODUCTION

The Expert Design Advisor (EDA) is a decision-aided toolset for use by
systems engineers in facilitating the development of large, complex systems
involving Mission Critical Computing Resources (MCCR).

1.1 PROBLEM/SOLUTION

EDA is specifically designed to avoid major errors and imperfections
early in the design phase. 1In large, complex systems, involving MCCR,
decisions impacting architectural development and performance cannot
effectively be made by conventional inspection. When a poor design decision
is made early in the design phase, the cost for correcting it may far exceed
the planned budget. This is because all subsequent designs and
implementations based on or derived from the poor decision may have to be
scrapped and new plans started from scratch. This can be fatal for a
particular project.

In a typical system, where EDA might be applied, there are at least
three essential elements: requirements descriptions, design descriptions, and
implementations. The requirements descriptions include measures of
effectiveness (MOE) and environmental parameters; design descriptions include
logical models (made up of many smaller logical modules) and implementation
models (made up of many smaller implementation nodes); and implementations
include hardware, software, manuals, and defined user interactions. The
implemented design must satisfy the original requirements.

One function of the EDA is to map logical descriptions onto
implementation resources in a distributed processing environment in order to
optimize the performance of the overall system. From the "black box" point of
view, as shown in Figure 1-1, the EDA prototype toolset utilizes the following
inputs: implementation resources, logical descriptions, environmental
parameters, MOE requirements, and user modeling information. It processes the
input and produces candidate allocation mappings that provide high
performance, high reliability, fault tolerance, and cost-efficiency to the
overall system.

1-1

NAVSWC TR 90-46

INPUT EXPERT DESIGN ADVISOR OUTPUT
>MOE. WORST CASE RESPONSE TIME
1) GMENIMP_ENTATION RESOURCES PROPERTIES >REQUIREMENT 40mSEC
ATTRIBUTES. AND CHARACTERISTICS
— . - ALLOCATION #71 =
PERFORMANCE 50 mSEC 753
) L~ UYKaa ~— 8~
- B T -: S
UYKAS e pp UYK&3 ALLOCATION - [‘ss P5 Py S2
— - —_ SIMULATION & ~= ==
Pa P3__, EVALUATION P4 P3__
s Nac ADAS SES NATSAN Tss wLTs1

— S . —_— \Kb—‘/ ey
2:GVENLOGICALTASK'S PROPERTIES
ATTRIBUTES AND CHARACTERISTICS

- ALLOCATION #2
- PERFORMANCE 38 mSEC

| L St' P
— | = =~
— ‘ N pa 3
3 s2 ' =3 P .
— - - g8
‘ . g — =
— —_— . i —— b=
g . ————
\\ ; CODE i ALLOCATION #3 P1
ss NS4 ! GENERATOR PERFORMANCE 20 mSEC <5=>
— ‘ case ©s2
—_ —— FA
v . P3 —
. PS &1 . sa S5 Pa
31 GIVEN MOE's REQUIREMENTS & e = el
ENVIRONMENTAL PARAMETERS — T A
- P
4 ——————— 83
USER SMODE NG
TagCTan ——— =

FIGURE 1-1. PROBLEM STATEMENT

The EDA Enhanced Systems Engineering Methodology is the standard
software intensive systems life cycle model augmented by the EDA methodology
that enhances all phases of the standard model. The EDA methodology is
a itomated through the EDA prototype toolset, different types of simulation
tools, different types of CASE tools, and the user interface as shown in
Figure 1-2. The major development, however, is currently concentrated on the
EDA prototype toolset since the other internal areas (i.e., CASE and
simulation tools) have been addressed by commercial and DoD organizations.

The toolset (Figure 1-2) consists of five tools: the Recomposition
Advisor (RA) tool, the Fragmentation and Decomposition Advisor (FDA) tool, the
Code Generation Advisor (CGA) tool, the Utility tool, and the Resource
Allocation Advisor (RAA) tool, the latter being the only tool that has been
implemented to date.

The RA and FDA tools allow for the restructuring of logical or
implementation models including the fragmentation, decomposition, and
recomposition of components. The CGA tool analyzes the logical and
implementation models and advises the Code Generator and the user on the
structure of programs to generate. The Utility tool is a collection of
routines that is used by the EDA prototype toolset to manipulate and transport
the inputs, outputs, and system requirements. Lastly, the RAA tool analyzes
both the logical and implementation moccls’ characteristics and proposes an
allocation mapping that satisfies the original requirements.

1-2

NAVSWC TR 90-46

USER

TALORNG | | EDA ADVISE
L
; . RECOMPOSITON |
: ADVISOR

I H

1
P ‘ CFRAGTMENTATION & f
TEAMWORK ‘ * DECOMPOSITION [RE i
e ‘ ADVISOR RESULTS | !
PHYSICAL ALUATOR' M I
. CONFIGURATION ‘
‘ | rx‘x\:www:@t,\\‘m:mw i
. \\\\\\\\\\\\\\\ , ADAS SES ANATSAN
" FUNCTIONAL : KEE N | ALLOCATION ALLOCATION SIM
: osscmmgu -~ /\ A GORNHM MmM CANDIDATES | &EVACFA‘HON :
. (SOFTW, i ' N LIE!
=] : o ULNIUTY § 000 0 § f
’]\Sffflf “w““““‘*““§§ }
MOE & i . AL LB RAR
ENVIRORMENT : | DRNRHATERARA
} PARAMETERS i |)
1 i CODE i
GENERATION
ADVISOR |
§ EDA DATABASE —
CODE
GENERATION

FIGURE 1-2. EDA ARCHITECTURE

The tools work independently, but complement each other in order to
fulfill the functionality of the EDA. Given a particular view of the logical
model and implementation model, the EDA prototype toolset attempts to make a
near-optimal allocation.

1.2 BACKGROUND

The EDA was developed as an outgrowth of a larger Independent
Exploratory Developuwent (IED) research project. The objective of that effort
was to develop an automated, integrated design methodology and design
environment for the next generation Anti-Submarine Warfare (ASW) combat
systems. The research was divided into two phases: (1) to establish,
validate, verify, and document a system’'s design methodology for the
implementation of Artificial Intelligence (AI) and ASW algorithms in
VHSIC/VLSI technology, and (2) to automate that methodology to the maximum
extent possible by developing an integrated expert system, data vase, and
design automation tools environment. The latter phase, which was based on the
methods, techniques, and experience gained in the first phase, produced the
EDA.

1-3

NAVSWC TR 90-46

CHAPTER 2

MISSION CRITICAL SOFTWARE INTENSIVE SYSTEMS

Mission critical software intensive systems are defined by the various
descriptions (or views) developed during the systems' life cycle, including
its implementation. These descriptions specify the requirements, designs, and
implementations of the system.

2.1 REQUIREMENTS DESCRIPTIONS

Requirements descriptions fall into three main categories: functional
requirements, nonfunctional requirements, and background information.

2.1.1 Functional Requirements

The functional requirements describe what the system must do without
specifying physical or temporal limitations. An example of a requirement for
a sonar system is the following: The system must detect an object within a
given range of the sonar. A more mathematical example is: The system must
have the ability to sort numbers in ascending order.

2.1.2 Nonfunctional Requirements

Nonfunctional requirements specify or limit temporal and other
requirements not directly related to tasks the system must perform. Examples
of nonfunctional requirements include real-time constraints, reliability
specifications, system size limitations, system production cost limitations,
and environmental requirements (ruggedized/militarized).

2.1.2.1 Measures of Effectiveness (MOE). In order to determine how
effectively the system meets its nonfunctional requirements, MOE are typically
derived from the requirements and other programmatic sources. These MOE
include, but are not limited to: worst case, average case, and/or best case
response times for tasks/functions; response times for critical groups of
tasks/functions; statistical distributions on response times; performance
under load conditions; degradation under load; reliability (both functional
and resource) measures; resource load constraints (functions, CPU utilization,
memory utilization, disk utilization); resource size limitations,; and resource
cost limitations.

NAVSWC TR 90-46

2.1.2.2 Environmental Parameters. The environmental parameters are variables
outside of the system that might affect its operation as related to temporal
and other nonfunctional requirements. They can be used to define load
conditions. For example, if an ASW system is tracking the number of submarine
contacts in an area, then an environmental parameter might be a worst case
approximation of the number of submarines that might be detected at one time.
A more mathematical example is a sort routine. If the sort routine is viewed
as the system and it allows the user to specify how many numbers to sort, then
the number of numbers to be sorted could directly affect the operation
(response time) of the sort routine and is considered an environmental
parameter,

2.1.3 Background Information

Included in the requirements is background information that does not
define specific functional or nonfunctional requirements, but helps the
systems engineer or systems analyst to better understand the reasons for
building a particular system.

2.2 DESIGN DESCRIPTIONS

Design descriptions are made up of the logical and implementation model
in addition to any supporting tools, documentation, and methods.

2.2.1 Logical Model

The logical model is typically designed in a hierarchical structure to
encapsulate all the properties, attributes, and characteristics of the
system’'s logical design. This hierarchical structure allows the logical model
to be expanded, contracted, decomposed, and recombined without aay limitation
as the model evolves. By having these capabilities, the logical model
framework is highly robust and highly flexible.

The design of the logical model assumes that resources are limitless and
have all needed capability, but has no implementation information. During
logical design, the multiple representation of the design is developed. Three
typical representations include data design, behavioral design, and object-
oriented design.

2.2.1.1 Data Design. In data design, the designer determines the elemental
and composite types of data. These data types are influenced by the types of
operations to be performed on them and will, in turn, affect the procedural
design and interfaces. At this time, only abstract data types are considered;
implementation details are left for later. How the data desigr affects
subsequent design is determined by the methodology used: data flow oriented
design leads to modular, sequential processing of relatively nonhierarchical
data; data-structure oriented design leads to procedural processing of highly
hierarchical data. The data design leads directly to architectural design.

2-2

NAVSWC TR 90-46

2.2.1.2 Behavioral Design. In behavioral design, information and control are
defined through use of modules and interfaces. At the logical model stage,
the designer concentrates on design abstraction, modularity, and information
hiding. Information concerning required abstract resources is annotated to
some extent in the logical model.

2.2.1.3 Object-Oriented. The object-oriented descriptions define the objects
that make up a system and the relationships between objects. 1In addition to
the relationships between objects, capabilities of the objects are defined.

2.2.2 Implementation Model

While the logical model is being developed, physical implementation
factors are also considered. Candidate implementations, consisting of limited
resources of known functionality, are suggested for allocation to logical
resources in the logical model. The breakdown and creation of physical
implementation elements often reflect the possible programming languages and
hardware capability for the system so that these elements can be represented.

Like the logical model, the implementation model is designed in a
hierarchical structure to encapsulate all the physical properties, attributes
and characteristics of the implementation model. It can also capture the
relationship and the connectivity of the nodes, subnodes, supernodes, and
network topology. This hierarchical structure allows the implementation
network (or physical network) to be expanded and contracted without any bound
limitation as the network evolves. By having these capabilities, the
implementation model framework is highly robust and highly flexible.

2.3 IMPLEMENTATIONS

Implementations include all hardware devices as well as all software
code, execution environment, data files, system-user documentation, and human
interaction necessary for the system to perform its desired functions.
Hardware may include computers, signal processors, sensors, and weapons. The
software not only includes the binary code running on the computers, but also
the source code with comments. The documentation may include information
concerning design and/or requirements of the system as well as the procedures
for using the systems. Part of the functionality that the system performs may
in actuality be performed by the operator. In this rase the operator is
considered part of the system.

2-3

NAVSWC TR 90-46

CHAPTER 3

EDA ENHANCED SYSTEMS ENGINEERI VG METHODOLOGY

The EDA Enhanced Systems Engineering Methodology is the standard
software intensive systems life cycle model (i.e., "Waterfall Model,"
"Modified Waterfall Model," and "Spiral Model") augmented by the EDA
methodology. This enhanced methodology attempts to improve all phases of the
standard life cycle model and facilitate the development of systems that meet
their requirements, are developed within cost, and are maintainable. The
methodology is repeatable and, to a large extent, automated.

3.1 STANDARD SOFTWARE INTENSIVE SYSTEMS LIFE CYCLE MODEL

The software intensive systems life cycle model is a process by which a
system is developed and maintained. It comprises three phases: problem
definition, software/system development, and software/system maintenance.
Figure 3-1 describes the components of the development process and their
relationships to each other.

PROBLEM SOFTWARE/SYSTEM SOrTWARE/SYSTEM
DEFINITION —» { DEVELOPMENT » |[MATNTENANCE

/ \ / \ / \

SUPPORT ACTIVITIES

FIGURE 3-1. STANDARD SOFTWARE INTENSIVE SYSTEMS
LIFE CYCLE PROCESS

The three phases attempt to logically move the developers from the
problem to the solution. This is sometimes called "the Waterfall Model”
approach because each phase (and each subphase within a phase) follows one
after another. However, in reality, it is often necessary for the developers
to iterate back to a previous phase. There are two basic instances when this
iteration will occur: when an error is discovered in a phase (after the phase
is complete) and when the requirements and/or problem definition is changed
due to a changing environment. In each of these instances the developer will

3-1

NAVSWC TR 90-46

go back to the phase (and subphase) where the "problem" has occurred and make
the necessary modifications to the phase (and subphase) and to all successive
phases (and subphases) until they get back to the current phase (and
subphase). This method is time consuming and cost inefficient. Other
methods, such as the "Spiral Model," can also be used with the EDA
methcdology.

In addition to these three phases, there are many support activities
that must take place for a software project to produce and maintain a usable
solution. These include configuration management, project management, and
document generaticn activities.

3.1.1 Problem L Zinition

The problem definition phase attempts to produce a clear understanding
of the problem. The result of the phase is usually a document(s) that
describes the problem in detail. A determination is also made by the end of
the problem definition phase as to whether a problem warrants the development
of the system. The problem definition phase has three subphases.

3.1.1.1 First Subphase. The first subphase attempts to establish the

problem. The problem may be either some existing deficiency, new deficiency

brought about by a changing environment, and/or some enhancement to an

existing system to increase functionality or productivity. The subphase

begins with the user or customer; needs are expressed informally through

discussion, or formally through a contract. The process begins with "there's

got to be a better way," and leads to "my problem is...," "my constraints
are...," and "roughly, what I'm looking for is...." The analysts must
identify the problem, including necessary information to be given to--or
received from--the system, functions, and performance. The problem statement
must clearly dJdistinguish between required functions and optional
functionality.

3.1.1.2 Second Subphase. In the second subphase a system analysis is
performed to determine the external elements, interfaces, and constraints that
may affect the ultimate design. The analysts determine the functions and
information flow required to design the solution at a very high level. The
analysts may develop prototypes of logical and implementation models to
determine the feasibility of finding a solution and better understanding of
the problem requirements. These moudels are defined and described in Section
2.2. The ultimate result of this analysis is a requirements specification
document that explicitly states the required functionality. This
specification may be a basis from which a contract for system development can
be negotiated. This document will also be used by the engineers to formulate
solutions.

3.1.1.3 Third Subphase. The last subphase determines if the effort in system
development, purchase, training, and maintenance is cost effective.
Ultimately, the analysts must decide if the problem is worth the solution.
Factors which will impact this decision include a projected cost versus
benefits of the solution trade-off, what sort of technology is available,
whether development of a new technology is justified, and whether other

3-2

NAVSWC TR 90-46

alternatives exist (including "doing nothing"). A first cut of division of
functions between hardware and software should be made to assess the
acceptability of projected performance, reliability, and interfacing.

3.1.2 Software/System Development

The requirements developed in the problem definition phase and
documented by the requirements specification documents are implemented in the
software/system development phase. In software/system development a solution
to the problem is analyzed, designed, implemented, tested, and validated.
This phase is divided into the following five subphases that correspond to
each of the five activities: requirements analysis, system design, detailed
design, test, and Independent Verification and Validation (IV&V). Like the
phases of the model, each subphase is typically performed one after another
until the entire phase is complete. Exceptions include the prototyping and
testing of key portions of the system design to prove viatility while reducing
risk and the enhancing, optimizing or correcting of previous subphases.

3.1.2.1 Requirements Analysis. The first task for the analysts/engineers is
to understand the problem. Two resources are used in doing this: (1) the
problem definition and (2) discussions of needs with the problem definition
developers. When the customer is the Navy, this discussion can be difficult,
since regulations surrounding the contract may restrict the Navy'’'s contact
with the contractor. The importance of an unambiguous problem definition is
clear in dealing with the Navy, because the concept of the needs and
constraints come from that contract. Those needs and constraints may be
related to economic, technological, spatial or logistic concerns, or involve
training, man-machine interfaces, or integration into existing systems.

Once the analysts/engineers have a clear understanding of the problem,
it can be evaluated to determine the communication and processing requirements
necessary to octain the desired results. This evaluation will lead to the
specification for the propos~d system. Through methods that may involve data-
flow diagrams, control-flow diagrams, entity relationship diagrams, and
prototyping, the specification identifies functions that the system will
pecrform, but it does not state how the system will be implemented. The
analvst must be very careful to avoid including implementation details, such
as low-level algovithms and data structure. This hierarchically refined
definition of the requirements leads the analysts to logical solutions, the
most feasible of which will te determined by user needs and resources. The
requirements will be both functional (given input, what should be the output?)
and nonfunctional (performance, reliability, etc.). In this stage of
development the logical mecdel is used to determine the feasibility of finding
a solution or trade-offs hetween vastly differing solutions. A detailed
description of the logical model can be found in Section 4.1.1.1. Prototype
implerentation wndels may be developed to show that the process to solve the
problem is reasonable.

The final step in this process is the generation of documentation that
describes how the various requirements interrelate and delineates possible
design solution(s) to meet the requirements. The solution is legical, devoid
of all implementation details, and adaptable. 1t takes into account the fact

3-3

NAVSWC TR 90-46

tha. the user’s concept of the system changes throughout the development
process. The specification also includes validation items used by the
designer to show that the final design meets the original requirements.

3.1.2.2 System Design. The next subphase of system development uses the
background information, functional requirements, and nonfunctional
requiremen-s of the preceding subphase. Depending on the view taken of the
data, functions, and needs of the user, one of several methods is followed to
determine how the solution should be implemented. This begins with an
abstract logical design, which defines the structure of data objects and moves
to a concrete implementation model, taking into account network topological
and hardware architectural considerations.

3.1.2.3 Detailed Design. During the detailed design subphase, low-level
algorithms are selected and implemented. This selection includes algorithms
that are implemented in hardware processors and software procedures. Software
algorithms are described in a form that emphasizes structured programming
constructs. Program Description Language {PDL) may be used to define, in
detail, what processing is necessary to implement the algorithm. Programming
language details are kept at a minimum so that the PDL can be converted to
whatever compilable form is required, although information structure and user
requirements may make this impossible. After the system is written in PDL,
coding is accomplished with ease, knowing that language detail problems in one
module can be addressed separately from other modules.

3.1.2.4 Testing and Integration. During the testing and integration
subphase, each module is tested for correctness as a unit. Test cases for the
module are designed to ensure proper performance and efficiency. The effects
on performance at the limits of design and erroneous input are examined. The
planning for such tests begins well before testing actually takes place, as
soon as the expected results can be determined.

As the modules of some subfunction of the system are shown to perform as
expected in a unit test, they are integrated and a test is applied to the
integrated modules. One by one the subfunctions are combined and tested for
overall system functionality and interfacing. This can be performed in either
a top-down fashion, with code stubs substituting lower level modules, or
bottom-up, where drivers are written for groups of elemental modules, or a
combination of the two. It is important that careful consideration be given
to the test code; the test is valid only if the stubs and drivers are correct.
During integration testing, critical modules (those which satisfy many
requirements or contain complex code) should be given special attention,
testing all paths above and below them.

3.1.2.5 Independent Validation and Verification (IV&V). Validation is the

comparison of the integrated system against the requirements as determined

during analysis. Verification is the comparison of actual response and

results of the system to what is expected. For Navy applications, these are -
typically performed by an independent contractor. A test plan is drawn up

describing how and when the tests will be applied, and a test procedure is

written specifying which test will be used to show conformance to which

requirement. After IV&V, the Navy users, for whom the system was designed,

may do application specific testing (in industry, this is sometimes called a

3-4

NAVSWC TR 90-46

"beta test"). A system that has been properly analyzed, designed, and tested
should pass this process. Since the meeting of requirements involves both
ends of the development process, inconsistencies are difficult to correct.
Traceability is imperative: if the development process cannot be traced back
to the requirements, there is no hope for discovering where the omission
occurred or where to begin redesign.

3.1.3 Software System Maintenance (Change Control)

All software, no matter how well designed and coded, requires
maintenance. This maintenance can take many forms, not all of which are
concerned with correcting errors (corrective). Updates due to changing
environments (adaptive) and upgrades to increase functionality or performance
(perfective) are two other activities that constitute maintenance and are
guaranteed to occur. Since software does not break or wear out, the bulk of
maintenance required (once the system has been thoroughly tested and debugged)
is adaptive and perfective. It is because of this that the task of system
maintenance is often generically called "change control." Maintenance takes
the form of prerelease corrections or additions as a result of a review
(changes prompted by software trouble reports submitted by the user), or
updated and upgraded versions. In this way, the software stays up-to-date
with technology and user needs. Changes to the system may involve backing up
the development ladder, all the way to the analysis stage. It is imperative
that traceability exists throughout the development process so that the impact
of changes can be minimized.

3.1.4 Support Activities

The support activities bolster the other three phases of the life cycle
and include project management (cost estimation, resource allocation, work
scheduling), analysis and design reviews, and document generation. These
activities are the backbone of the development process because the other
phases require the support to be successful (create a system that works and is
maintainable within cost restrictions). One of the most important support
activities that impacts all other phases of the development process is
configuration management.

3.1.4.1 Configuration Management. Configuration management starts at the
beginning of the development process and continues throughout the life of the
system. It is based on the fact that change occurs not only after the system
has been delivered, but all during the development process. Accepting this
fact, it is best to have an orderly and accountable way to manage it. All
the following are configuration items: analyses, specifications, design
documentation, code listings, test plans, procedures, results, installations,
operations, and maintenance manuals. When the development process starts,
several versions of a configuration item may exist. When one is selected for
use, this becomes part of the baseline configuration. Formal change
procedures must be followed to make changes in the baseline. This way, errors
or improvements are made and documented in an orderly fashion, and
accountability is preserved.

NAVSWC TR 90-46

3.2 EXPERT DESIGN ADVISOR METHODOLOGY

The EDA methodology is an automatable process by which a systems
engineer can optimize a particular system’s design structure. This includes
making optimal allocations of logical design objects to physical
implementation resources. The EDA methodology assists the engineer in the
development of the logical and implementation design as well as in the
generation of software code. The methodology is most effective when automated
as much as possible. It attempts to provide the systems engineer with a
better understanding of the system, and it facilitates the engineer’s trade-
offs and/or modifications of the system, enhancing his/her ability to make
intelligent systems design decisions.

Portions of the EDA methodology can be applied to all stages of system
developments. In the problem definition and requirements analysis stages of
development, the logical and implementation models may be only throwaway
prototype models, used to determine the feasibility of finding a solution, or
to trade off between vastly differing solutions. In the design phase, EDA is
most useful where it will help the systems engineer find a near optimal design
given the system's requirements; e.g., the engineer is able to eliminate poor
designs without the cost of prototyping the designs in software and/or
hardware. The methodology includes additional assistance to the engineer in
the detailed design phase during code development. In the test and IV&V
phases, the EDA methodology is useful in optimizing design error corrections
found in these phases. Finally, in the change control maintenance phase, the
EDA is vital when modifications involve design changes and/or the physical
implementation architecture.

The methodology currently requires a data or control-oriented
representation of the (possible) logical design and/or a description of the
(possible) implementation architecture. Use of object-oriented design
descriptions will be added to the methodology at a later date.

The results of the methodology include analysis, refined logical models,
refined implementation models, mappings of logical model views to
implementation model views, and code generation structure.

EDA methodology is divided into the following sections: System
Characterization, Fragmentation and Decomposition, Recomposition, Resource
Allocation Mappings, Code Generation, and Automation Opportunity of
Methodology.

3-6

NAVSWC TR 90-46

3.2.1 System Characterization

Characterizations of the system are critical to the methodology. The
characterizations are dependent on different attributes of the system. They
are developed for the logical model, implementation model, or a combination of
both. The characterization of a model may only partially describe the system.

A "view" of a model is defined as a collection of modules (or resources)
which completely (necessary and sufficient) describes the system. Figure 3-2
shows two examples of two views that describe a simple system. Note that a

view completely spans the decomposition tree such that each path between a
leaf node and the root of the tree pass through exactly one node.

view 1

view 2

FIGURE 3-2. EXAMPLES OF TWO VIEWS THAT DESCRIBE
A SIMPLE SYSTEM

3-7

NAVSWC TR 90-46

The major characterizations within EDA are:

o TIMPLEMENTATION FRAGMENT CHARACTERIZATION--looks at an incomplete
portion of a view of the implementation model.

o IMPLEMENTATION LEVEL CHARACTERIZATION--looks at a complete view of
the implementation model.

o IMPLEMENTATION MODEL HIERARCHY CHARACTERIZATION--includes all
hierarchical views of the implementation model.

0 LOGICAL FRAGMENT CHARACTERIZATION--looks at an incomplete portion of
a view of the logical model.

© LOGICAL LEVEL CHARACTERIZATION--looks at a complete view of the
logical model.

o LOGICAL MODEL HIERARCHY CHARACTERIZATION--includes all hierarchical
views of the logical model.

o0 SYSTEM FRAGMENT CHARACTERIZATION--looks at only an incomplete
portion of a view of the implementation model and an incomplete
portion of a view of the logical model.

o SYSTEM LEVEL CHARACTERIZATION--looks at one complete view of the
implementation model and one complete view of the logical model at
some level.

o SYSTEM HIERARCHY CHARACTERIZATION--includes complete system
hierarchy of both logical and implementation models.

3.2.1.1 Attributes. The characterizations are made according to a number of
attributes. These include size, complexity, inherent parallelism, the real-
time criticalness or support, module/resource dependency, physical support of
logical functions, and physical connectiveness. The collection of rules to
quantify the attributes is used by the methodology to characterize the logical
model, implementation model, and overall system--in conjunction with the MOE
environmental parameters, and user model direction.

3.2.1.1.1 SIZE. The size of the system has a large impact on the amount of
resources necessary to find an optimal allocation. The engineer can determine
the relative size of the current problem (view in the system). A size rule
for the logical model view is based on the number of logical modules; a size
rule for the implementation model view is based on the physical nodes; and a
size rule for the overall system view is based on both the logical modules and
the physical nodes.

3.2.1.1.2 COMPLEXITY. The complexity of the overall system has a large
impact on the recomposition, fragmentation/decomposition, and load balancing
of the logical and implementation models to satisfy requirements. The
complexity rule of a logical system view within the methodology is based on
the McCabe complexity analysis equation which, in turn, is based on the number
of communication arcs and the number of logical modules. A more complex

3-8

NAVSWC TR 90-46

measure could be substituted by the engineer for this measure. A complexity
rule for the implementation model view is based on the physical node and the
connectivity of the implementation nodes. The complexity rule for the overall
system is based on the complexity of both the logical model view and the
implementation model view.

3.2.1.1.3 PARALLELISM. The parallelism of the system has a large impact on
the scheduling, load balancing, and reconfiguration of the logical and
implementation model. The parallelism rule for a logical model view is based
on the number of modules that can process concurrently with each other. The
parallelism rule class for an implementation model view is based on the total
parallel threads of the physical system. The parallelism rule class for the
overall system is based on the parallelism of both the logical model view and
the implementation model view.

3.2.1.1.4 HARD REAL-TIME. The hard real-time nature of a system has an
enormous impact on scheduling, load balancing, reconfiguration, and trade-offs
among other factors such as reliability, fault tolerance, cost efficiency,
etc. The hard real-time rules for the logical model view are based on the
criticalness of tasks and the deadline driven characteristic of the logical
system. The hard real-time rules of the implementation model view are based
on a real-time support characteristic. The hard real-time rules for the
overall system are based on the amount of hard real-time support of the
implementation model view versus the logical model view needs.

3.2.2 Fragmentation_and Decomposition

Fragmentation is the splitting of one module (or one node) into multiple
modules (or multiple nodes) within a level of the hierarchy; decomposition is
the splitting of one module (or one node) into multiple modules (or multiple
nodes) at the next level down in the hierarchy. 1In the first case,
fragmentation, the original module (or node) is replaced, while in the latter,
decomposition, the original module (or node) remains in the hierarchy.

The engineer needs to fragment and/or decompose both the logical design
models and implementation models as he/she develops a more detailed
description of the system. Various attributes in the system determine the
amount of decomposition and/or fragmentation. For instance, a typical human
can only understand up to seven to nine modules at one time; therefore, an
engineer should not decompose (or fragment) a module into more than seven to
nine "submodules." Additionally, implementation resources described in the
implementation model can be fragmented and/or decomposed into smaller
implementation resources based on the physical attributes and characteristics
in order to satisfy the requirements and modeling direction. It is important
that during fragmentation (the split at one level) the decomposition at higher
levels remains consistent. The fragmentation and decomposition should also
try to reduce complexity within a level (or a portion of a level) and make the
views of the system intuitive.

3-9

NAVSWC TR 90-46

3.2.3 Recomposition

The purpose of the recomposition is to redefine or merge a portion of
the hierarchy, composed of multiple modules and connections, in a new way so
that the pertinent information is maintained. It may span levels of the
design hierarchy. Recomposition typically tries to make the system more
understandable or tries to optimize one model (implementation or logical) to
the other model. Figure 3-3 gives an example of a recomposition of a graph.
The first graph’‘s A, B, and C modules have been reorganized so that in the
second graph the functions in A, B, and C are performed by modules X and Y.
Note as in the fragmentation and decomposition, the engineer (with supporting
tools) must ensure that consistency is maintained. The recomposition is
typically based on the attributes and characteristics of the existing model.
Recomposition can occur in both the logical and implementation model.

view 1t . . .

view 2

FIGURE 3-3. RECOMPOSITION OF A GRAPH

3-10

NAVSWC TR 90-46

3.2.4 Resource Allocation Mappings

The purpose of the resource allocation is to allow the mapping (or
allocation) of one view of the logical model onto one view of the
implementation model, given the environmental parameters so that the system's
MOE will be adequately met. The resource allocation methodology typically is
applied to one view of the system at one time; though used iteratively, it
allows the user to compare multiple system views and/or alternative system
definitions.

It is not feasible (even for a rather small system) to search through
all possible combinations or permutations of allocations to find the optimal
allocation. Therefore, automation support is critical for this portion of the
methodology. The methodology attempts to rule out a large sector of bad
allocations; then it divides and conquers a small sector of allocations that
are in the neighborhood of optimal. Next the resource allocation portion of
the methodology specifies the application of a series of mathematical analyses
and ratings to determine the most suitable allocation candidates that are in
the neighborhood of optimal. This method solves the problem very quickly,
more efficiently, and it is better managed for large, complex mission critical
systems.

This methodology will not necessarily find the "optimal" solution given
the user's MOE. If the search space is too large, the system will produce a
"near optimal" solution within the time constraints of the engineer. The
engineer can tailor the depth of the methodology according to his/her
available resources (computer time, manpower, clock time, etc.).

Figure 1-2 provides an overview for the resource allocation methodology.
The methodology uses a number of rules of thumb that are automated into an
inference engine and a set of rules. The inference engine is the intelligent
mechanism of the system. It is composed of collections of rules (stored in
the Rules Library), classes of algorithms (stored in the Algorithms Library),
analytical equations, and intelligent probabilistic reasoning, which are the
strategies needed to solve the allocation problem.

The resource allocation mapping process includes selection, application,
and assessment of allocation algorithms.

3.2.4.1 Allocation Algorithms. A variety of mathematic and heuristic
algorithms can be used to generate candidate resource allocation mappings.
This section describes some of the kinds of algorithms that might be employed
and describes useful ways of categorizing them.

3.2.4.1.1 CLASSES OF ALGORITHMS. The collections of algorithms that are used
by the methodology to determine optimal allocations currently consist of
fifteen classes: analysis-oriented, communication-oriented, complex
analytical equations, computation-oriented, dynamic priority scheduling base,
heuristic algorithm, intelligent probabilistic reasoning, mixed analysis- and
simulation-oriented, mixed computation- and communication-oriented,
nonpreemptive static priority scheduling base, nonrandomized, preemptive
static priority scheduling base, randomized, simulation-oriented, and static
scheduling base. The selection of both the particular class and algorithm is

3-11

NAVSWC TR 90-46

based on the attributes of the algorithms; the characterization of the

logical,

implementation, and system view, system inputs and requirements; and

the engineering resource constraints (CPU time, disk space, clock time, etc.).

Provided below is a list of classes of algorithms and their different
strategies that optimize resource allocations based on specific criteria.

o]

Analysis-Oriented--uses certain analytical equations and rating
schemes that are selected for different criteria.

Communication-Oriented--minimizes the data volume communication
traffic between logical modules. (Refer to Appendix)

Complex Analytical Equations--uses equations that were derived from
scientific books and research journals.

Computation-Oriented--performs load balancing on the system's
computational intensity.

Dynamic Priority Scheduling Base--schedules tasks based on
priorities which are issued during run-time.

Heuristic Algorithm--uses information from past experience
techniques and probabilistic reasoning.

Intelligent Probabilistic Reasoning--uses different probabilistic
distribution functions and voting schemes.

Mixed Analysis- and Simulation-Oriented--uses a combination of both
certain analytical equations and rating schemes, and different
simulation techniques at different levels of accuracy that are
selected for different criteria.

Mixed Computation- and Communication-Oriented--minimizes the data
volume communication traffic between logical modules and performs
load balancing on the system's computational intensity.

Nonpreemptive Static Priority Scheduling Base--schedules tasks based
on priorities that are issued prior to run-time with the condition
that the tasks cannot be discarded from the execution queue for any
reason.

Nonrandomized- -uses specific patterns of allocation schemes based on
the specific objective function(s).

Preemptive Static Priority Scheduling Base--schedules tasks based on
priorities which are issued prior to run-time and with the condition
that the tasks can be discarded from the execution queue if more
important tasks need to be executed first.

Randomized--uses random allocation schemes based on the specific
objective function(s).

3-12

NAVSWC TR 90-46

o Simulation-Oriented--uses different simulation techniques and
different levels of accuracy that are selected for different
criteria.

o Static Scheduling Base--schedules tasks prior to run-time and based
on different types of criteria.

3.2.4.2 Allocation Algorithms Selection. The objective of the Allocation
Algorithms Selection is to select the best algorithm from the available
library of algorithms to effectively find the best possible solution. This
includes solving the problem quickly, accurately, and as near-optimally as
possible. The process involves first determining the domain of the problem,
the size of the problem, and the criteria that the developer wishes to
optimize. This information is used to determine the most suitable algorithm
in that domain to solve the problem.

3.2.4.3 Application of Alporithm or Development of Mapping. The application

of an algorithm is best described though a sample allocation problem as shown
in Figure 1-1. This demonstration is included in order to show the
functionality of EDA. The inputs on the left-hand side of the figure include:
hardware configurations, properties, attributes, and characteristics, (such as
connectivity, communication bandwidth, processing capability, etc.); software
logical modules, property attributes and characteristics, (such as

complexity, data dependency, parallelism, criticalness, communication
intensity, computation intensity, etc.); MOE (such as logical task response
time, logical model response time, implementation resources response time,
implementation model response time, overall system response time, etc.);
environmental parameters (such as reliability and fault tolerance, efficiency,
etc.); and user modeling direction (such as assigning specific reliability
value, fault tolerant value, critical value, response time to a specific
logical task, implementation resource, overall system, etc.).

Based on the characteristics of the given inputs, EDA allocates logical
modules as shown in Allocation 1, Figure 1-1.

3.2.4.4 Assess Allocation. The allocation is evaluated based on the
simulation reports in comparison with the MOE requirements, environmental
parameters and user modeling direction. The report that is generated as a
result of simulating the allocation includes information such as performance,
reliability, fault tolerance, cost efficiency, etc.

Figure 1-1 shows the iteration of the methodology given that the
assessment determines the MOE have not been sufficiently met. Since
Allocation 1 does not satisfy the requirements, the engineer (with automation
support) reallocates the functions to produce Allocation 2, taking Allocation
1 into consideration. Since Allocation 2 satisfies the requirements, the
mission is accomplished. To push the system performance further, the engineer
may assign a shorter response time on the overall system, forcing another
iteration (Allocation 3), taking Allocations 1 and 2 into account. This
process may be repeated until the "optimal" limit is reached.

3-13

NAVSWC TR 90-46

3.2.5 Code Generation

The purpose of the code generation methodology is to analyze the
logical and the physical models’ attributes and characteristics and determine
the developer’s optimal structure of programs needed to be generated in order
to satisfy the system’s requirements and the user modeling direction.

3.2.6 Automation Opportunity of Methodology

The methodology is automated to a large extent through the use of the
intelligent mechanism’s knowledge-base which is enhanced as these entities
expand. These entities operate on the logical model, implementation model,
MOE, environmental parameters, and automation user direction to arrive at the
necessary results. The methodology will be automated into five tools. The
learning mechanism of EDA is based on the evaluation of the candidate
allocation. For example, an inference engine composed »f collections of
heuristic classes of rules, classes of algorithms, sets of mathematical
analysis equations, and sets of intelligent probabilistic reasoning could be
used to automate the process. (This automation is described in Chapter 4.)

3-14

NAVSWC TR 90-46

CHAPTER 4

PROTOTYPE TOOLSET IMPLEMENTATION

The EDA prototype toolset, as implemented, uses a combination of the
rule-based artificial intelligence methods and brute force computational
intensive algorithmic methods to arrive at its recommendations. The toolset
consists of five tools: the Recomposition Advisor (RA) tool, the
Fragmentation and Decomposition Advisor (FDA) tool, the Code Generation
Advisor (CGA) tool, the Utility tool, and the Resource Allocation Advisor
(RAA) tool. EDA is implemented by using Knowledge Engineering Environment
(KEE) and Ada in each of the five tools.

The RA analyzes the logical and the implementation models’
characteristics and advises the user on recomposing the tragmentation of
modules (nodes) into larger modules (nodes) in order to satisfy the
requirements. The FDA analyzes the logical and the implementation models’
characteristics and advises the user on decomposing the logical modules
(nodes) into smaller fragments in order to satisfy the requirements. The CGA
analyzes the logical and the implementation models’ characteristics and
advises the Code Generator and the user on the type of programming structure
(i.e., package information) to generate. The Utility tool consists of a
collection of routines that are used by the EDA prototype toolset to
manipulate and transport the inputs, outputs, and system requirements. The
RAA analyzes the logical models’ and the implementation models’
characteristics and advises the user on the mapping of logical modules onto
physical implementation nodes in order to satisfy the requirements.

Architecturally, the RAA tool is the most important to the project. It
is currently the only tool implemented and will be used as a prototype for the
other tools. The implementations of the RAA emphLasize the EDA environment,
EDA capability, and EDA usage.

4.1 RESOURCE ALLOCATION ADVISOR TOOL

The RAA performs necessary characterizations which access criteria for
determining when other tools are needed to aid the modeling process. This
iterative process results in achieving an optimal solution. The RAA
functionality provides the user with a set of automated displays and commands
in order to manipulate the system representation for an optimal allocation.

NAVSWC TR 90-46

4.1.1 System Representation

System Representation consists of hierarchical levels of modules and
nodes which represent logical and implementation models. The records and
recursive pointers of this hierarchical structure form a powerful logical and
implementation model framework. It is the key to robustness and flexibility.

4.1.1.1 Logical Model's Information. The information necessary to represent
the logical model includes its properties, attributes, and characteristics
captured in modular form. The structure of this representation is designed so
that it could be enhanced or expandec as more properties, attributes, and
characteristics are defined.

Each module contains the following information: module name, the unique
identification of the module; process type, the type of processing that the
module performs; connectivity information (data and control), modules that
execute prior to or upon completion of any specific module; data that is
passed prior to or upon completion of any specific module; operation list, the
list that contains instructions used to manipulate data; submodule list and
super module list, the lists that contain modules that are part of the logical
model hierarchy; parallel process, a list that contains modules that can
execute in parallel; real-time, the list that contains timing information such
as soft and hard deadlines; and periodicity ol tae module.

4.1.1.2 Implementation Model’s In ormation. The information necessary to
represent the implementation model includes its properties, attributes, and

characteristics captured in ncie form. The structure of this representation
is designed so that it could be enhanced c: expanded as more properties,
attributes, and characteristics are defined.

Each node contains the following information: mnode name, unique
identification of the node; node type, whether the node is a single terminal
or a network of terminals; number of parallel threads that contains the number
of parallel processes that the node is capable of; lists of subnodes and
supernodes that contain other nodes that are part of the implementation model
hierarchy; and hardware specs that contain information related to the
particular implementation of the node.

Accompanying the node information is the connection information that
contains the following information: channel name, a unique communication
channel identification; data rate, the communication bandwidth of the
channel; data latency, the communication latency of the channel; protocol
overhead, the protocol overhead time for this channel; and protocol specs, the
protocol specification for this channel.

4.1.2 Functionality

The functionality of the RAA is carried out in three phases: the Rules
Selector (RS), the Algorithm Selector (AS), and the Algorithm Applier (AA).
These phases are facilitated by the displays and commands as described in
Section 4.1.3.

4-2

NAVSWC TR 90-46

4.1.2.1 Rules Selector. The RS analyzes and evaluates the problem to be
solved. Its purpose is to characterize the logical model, implementation
model, MOE requirements, environmental parameters, and user modeling
direction, each separately and together as a whole system. The results of
these characterizations include the selection of classes of rules to be
applied to certain algorithms which will be used by the AS.

4.1.2.2 Algorithm Selector. The purpose of the AS is to use the classes of
rules given by the RS to reject certain classes of algorithms and select the
most suitable algorithm for the AA. It begins the rejection process by
rejecting certain algorithms based on the attributes and the characteristics
of the logical, physical, and overall system. It starts a second round of
matching by rejecting other sets of algorithms using comparison models. By
analyzing algorithms left in the library, the selector performs certain
ratings based on a class of algorithm types. Finally, it selects the
algorithm with the highest rating and recommends it to the user.

4.1.2.3 Algorithm Applier. The purpose of the AA is to take the algorithm
given by the AS and run that algorithm to produce an allocation candidate for
simulation. The AA executes algorithms by applying rules and generates
resource allocation assignments. The AA process begins by taking the
recommended algorithm, making a remote procedure call on the VAX to execute
that algorithm, and receiving a report of the allocation.

4.1.3 Displays and Commands

EDA is composed of many display panels and commands which ease the
resource allocation architectural development process. Each of the tools has
different display panels and commands to serve its purpose. Both
independently and together, the tools serves EDA’s functionality. The RAA
displays and commands consist of the following three panels: the System
Characterization Panel, the Algorithm Applier Panel, and the Candidate
Assignment Display Panel.

4.1.3.1 System Characterization Panel. The System Characterization Panel
shown in Figure 4-1 allows the user to evaluate characteristics of the
logical, physical, and overall logical and physical systems thet are
characterized by the EDA’s inference engine--and to verify if the
characteristics are satisfactory. The user then either accepts the particular
characteristics or overrides them if they are not satisfactory.

In the current version of EDA, the System Characterization Panel
consists of fourteen attributes that are divided into three different types:
logical system, physical system, and overall system. There are seventeen
characteristics which are also divided into the same three types; and there
are seven commands.

NAVSWC TR 90-46

p Listener

}3 E;anne—::

’ RETURN TO-TOP LEVEL MENU

SELECT FUNCTION TO PERFORM

, ENTER HISTORIES SCREEN

[ACTIVATE LOGICAL SYSTEM UPDATE l[ACTIVATE PHYSICAL SYSTEM UPDATE Il ACTIVATE OVERALL SYSTEM UPDATE |

LOGICAL SYSTEM ATTRIBUTES PHYSICAL SYSTEM ATTRIBUTES OVERALL SYSTEM ATTRIBUTES

NUMBER OF SOFT\WARE MODULES NUMBER OF NODES NUMBER OF COMAf. LINKS PARALLELISM VALUE

SR | 5 B
NUMBER OF SOFTWARE PROCESSES NETWORK COMPLEXITY VALUE | PHYSICAL TOPOLOGY COMPLENITY VAL

R T R & STAR

MCCABE COMPLEXITY
SRR AN) 12.0
l \.u!uu I L

_OGICAL SYSTEM CHARACTERIZATIONS PHYSICAL SYSTEM CHARACTERIZATIONS

HARD REAL-TINME CH “TERIZ HARD REAL-TIME SUPPORT NETWORK COMPLEXITY .
COMPLEXITY CHARACTERIZATION
Soo0 SIMPLE [SIMPLE]

DEPENDENCY CHARACTERISTIC

PARALLELISM CHARACTERSTIC
VERY.HIGH.PARALLELISM

PARALLELISM CHARACTERIZATION
AP

PHYSICAL SUPPORT FOR LOGICAL

s LA LEIMPORTANT]
VERY.SMALL

OVERALL SYSTEM CHARA

FREE-STRTE ‘s console i1die & minuter

FIGURE 4-1. SYSTEM CHARACTERIZATION PANEL

4.1.3.1.1 LOGICAL SYSTEM ATTRIBUTES. The following list describes the
attributes of the logical system:

o MCCABE COMPLEXITY--the degree of McCabe complexity that the logical
system description possesses (real value).

o NUMBER OF SOFTWARE MODULES--the total number of modules within the
logical system (integer value).

o NUMBER OF SOFTWARE PROCESSES--the total number of processes that the
logical system possesses (integer value).

o PARALLELISM VALUE--the degree of parallelism (average number of
parallel threads) that the logical system description possesses
(real value).

NAVSWC TR 90-46

4.1.3.1.2 PHYSICAL SYSTEM ATTRIBUTES. The following list describes the
attributes of the physical system:

o CONNECTIVENESS--the degree of connectivity that the physical system
possesses (the ratio of communication links over the physical size,
real value).

o NETWORK COMPLEXITY VALUE--the degree of complexity that the
physical system configuration possesses (certain weight on number of
nodes and number of arcs, real value).

o NUMBER OF COMMUNICATION LINKS--the total number of communication arcs
between the nodes that the physical system configuration possesses
(real value).

o NUMBER OF NODES--the total number of physical system nodes (integer
value).

o PARALLELISM VALUE--the total number of parallel threads the physical
system possesses (real value).

o PHYSICAL TOPOLOGY--the type of connection in which the physical
system is configured (linear, ring, star, fully connected,
hyper-cube, etc.).

4,1.3.1.3 OVERALL SYSTEM ATTRIBUTES. The following list describes the
attributes of the overall system:

o COMPLEXITY VALUE--the overall degree of complexity of the logical
and physical system (real value).

o LOGICAL PLUS PHYSICAL SIZE--the overall size in terms of the total
number of logical modules and physical nodes (integer value).

o OVERALL LOAD DISTRIBUTION--the overall distribution of the logical
modules to physical nodes (integer value).

o PARALLELISM VALUE--the overall degree of parallelism of the logical
and the physical system (real value).

4.1.3.1.4 LOGICAL SYSTEM CHARACTERIZATION--The following list describes the
characteristics of the logical system:

o DEPENDENCY CHARACTERIZATION--the logical system's data dependency
characteristic is either independent, very low dependent, moderate
dependent, high dependent, very high dependent, evtremely dependent).

o HARD REAL-TIME CHARACTERIZATION--the logical system’s real-time
characteristic (modules’ dead line, processing, etc.) is either not
important, little important, important, very important, extremely
important, critically important).

NAVSWC TR 90-46

o LOGICAL SYSTEM SIZE--the logical system's size characteristic is
either tiny, very small, small, medium, large, very large, huge).

o MCCABE CHARACTERIZATION--the logical system’s McCabe complexity
characteristic is either very simple, simple, moderate, complicated,
very complicated, extreme.

o PARALLELISM CHARACTERIZATION--the logical system’s parallelism
characteristic (the rate of modules processing concurrently) is
either serial, extremely 1ow parallelism, very low parallelism, low
parallelism, moderate, high parallelism, very high parallelism,
extremely high parallelism). :

4.1.3.1.5 PHYSICAL SYSTEM CHARACTERIZATION. The following list describes the
characteristics of the physical system:

o CONNECTIVENESS--the physical system’s connectivity characteristic
system is either extremely low connected, very low connected, low
connected, moderately connected, highly connected, very high
connected, extremely high connected, fully connected.

o DEPENDENCY CHARACTERIZATION--not implemented yet (may be removed).

o HARD REAL-TIME SUPPORT--the physical system’'s real-time support
characteristic is either very poor, poor, fair, good, very good,
excellent.

o NETWORK COMPLEXITY--the physical system’s network complexity
characteristic is either very simple, simple, moderate, complicated,
very complicated, extreme.

o PARALLELISM CHARACTERIZATION- -the physical system’s parallelism
characteristic is either serial, extremely low parallelism, low
parallelism, moderate parallelism, high parallelism, very high
parallelism, extremely high parallelism.

o PHYSICAL SYSTEM SIZE--the physical system's size characteristic
is either tiny, very small, small, medium, large, very large, huge.

4.1.3.1.6 OVERALL SYSTEM CHARACTERIZATION. The following list describes the
characteristics of the overall system:

o COMPLEXITY CHARACTERIZATION--the overall system’'s complexity
characteristic is either very simple, simple, moderate, complicated,
very complicated, extreme.

o DEPENDENCY CHARACTERIZATION--not implemented yet.

o OVERALL SYSTEM SIZE--the overall system's size characteristic is
either tiny, very small, small, medium, large, very large, huge.

NAVSWC TR 90-46

o PARALLELISM CHARACTERIZATION--the overall system’'s parallelism
characteristic is either serial, extremely low parallelism, low
parallelism, moderate parallelism, high parallelism, very high
parallelism, extremely high parallelism.

o PHYSICAL SUPPORT FOR LOGICAL--the overall system’'s physical support
for the logical characteristic is either nonfatal, little important,
important, extremely important, fatal.

o SIZE BY LOGICAL PLUS PHYSICAL--the overall system’'s size
characteristic is either tiny, very small, small, medium, large,
very large, huge.

4.1.3.1.7 SYSTEM CHARACTERIZATION COMMANDS. The following list describes the
commands of the System Characterization Panel:

o ACTIVATE LOGICAL SYSTEM UPDATE--this command will activate the
logical system’s set of rules to characterize the attributes and the
characteristics of the logical description.

o ACTIVATE OVERALL SYSTEM UPDATE--this command will activate the
overall system’s set of rules to characterize the attributes and the
characteristics of both the physical system and the logical system
as an overall system.

0 ACTIVATE PHYSICAL SYSTEM UPDATE--this command will activate the
physical system's set of rules to characterize the attributes and
the characteristics of the physical system.

o ENTER ALGCRITHM APPLICATION SCREEN--this command will bring up the
ALGORITHM APPLICATION panel.

o ENTER ASSIGNMENT DISPLAY PANEL--this command will bring up the
CANDIDATES ASSIGNMENT DISPLAY panel.

o ENTER HISTORY PANEL--this command will bring up the HISTORY panel.

o RETURN TO TOP LEVEL MENU--this command will bring up EDA's top level
menu.

4.1.3.2 Algorithm Applier Panel. The Algorithm Applier Panel shown in
Figure 4-2 allows the user to evaluate the algorithm recommended by the RAA’'s
Algorithm Selector. It also allows the user to verify if the recommendation
is satisfactory by accepting or overriding the selection. 1If it is rejected,
the user has three options: to reconsider different algorithms that have
previously been rejected, to manually reject certain algorithms that are not
suitable, and to choose other algorithms (which may be suitable) for
execution. In this version there are six displays and ten commands.

NAVSWC TR 90-46

The Graph of the RESOUNCEALLOCATION Knowledge Base
ALGORITHM APPLIER PANEL

ALGORITHMS UNDER CONSIDERATION ALGORITHMS REJECTED I ALGO SELECTION MENU

ALGORITHM APPLIER PANEL RESET

RECONSIDER ALL REJECTED

SIMULATED.ANNEALING REJECT FROM CONSIDERATION

. . . SR . RATE.MONOTONIC.BEST.FIT.1 Bl i
COMPUTATION SIMULATION . RGUND.ROBIN DEADLINE.DRIVEN 1 EXPLAIN REJECTION

DATA.YOLUME.OPTIMIZATION 1

SELECT FOR CONSIDERATION

OVERRIDE SELFCTION

APPLY ALGORITHM SELECTION RULES

APPLY ALGORITHM
ALGORITHMS WHICH HAVE BEEN APPLIED | ALGORITHM TO APPLY

COMPUTATION.SIMULATION.ROUND.ROBIN

SCREEN MENU

| ENTER SYSTEM CHARACTERIZATION

CURRENT RECOMMENDED ALGORITHM

COMPUTATION.SIMULATION.ROUND.ROBIN
Unknown

ENTER CANDIDATES ASSIGNMENT

F_"

ENTER HISTORIES SCREEN

RETURN TO MAIN MENU

R

FIGURE 4-2. ALGORITHM APPLIER PANEL

4.1.3.2.1 ALGORITHM APPLIER PANEL DISPLAYS. The following list describes the
Algorithm Applier Panel Display:

o ALGORITHM TO APPLY--this display shows the algorithm that has been
chosen to be applied.

o ALGORITHMS REJECTED--this display shows the algorithms that have
been rejected by the Algorithm Selector from the ALGORITHMS UNDER
CONSIDERATION.

o ALGORITHMS UNDER CONSIDERATION--this display shows all

algorithms contained in the Algorithm Library that are under
consideration.

4-8

4.1.3.2.2

NAVSWC TR 90-46

ALGORITHMS WHICH HAVE BEEN APPLIED--this display shows the history
of the algorithms that have been applied.

CURRENT RECOMMENDED ALGORITHM--this display shows the algorithm that
has been recommended by the Resource Allocation Advisor to be

applied.

ALGORITHM APPLIER PANEL COMMANDS. The following list describes the

commands for the Algorithm Applier Panel:

(o]

ALGORITHM APPLIER PANEL RESET--this command will reset all the
displays in the panel to the initial states.

APPLY ALGORITHM- -this command will make a remote procedure call to
the VAX for executing the algorithm shown in the ALGORITHM TO APPLY
display and receive a report of the candidate allocation.

APPLY ALGORITHM SELECTION RULES--this command will activate the
classes of rules selected by the RULES SELECTOR to reject unsuitable
classes of algorithms and individual algorithms. It then analyzes
the algorithms that have not been rejected using mathematical
equations, probabilistic reasoning, and heuristic ratings, following
this with a set of rules that determines the algorithm which has the
highest rating. The algorithm with the highest rating is the
recommended algorithm and will be shown in the CURRENT RECOMMENDED
ALGORITHM display.

ENTER ASSIGNMENT DISPLAY--this command will bring up the CANDIDATE
ASSIGNMENT DISPLAY panel.

ENTER HISTORY PANEL--this command will bring up the HISTORY panel.

ENTER SYSTEM CHARACTERIZATION--this command will bring up the SYSTEM
CHARACTERIZATION panel.

EXPLAIN REJECTION--this command will list the algorithms contained
in the ALGORITHM REJECTED display for the user to select. This
selection will generate the explanation for the chosen rejected
algorithm.

OVERRIDE SELECTION--this command will list the algorithms contained
in the ALGORITHMS UNDER CONSIDERATION display so that the user can
override the algorithm shown in the CURRENT RECOMMENDED ALGORITHM
display.

RECONSIDER ALL REJECTED--this command will take all the algorithms
that have been rejected in the ALGORITHMS REJECTED display and put
them back into the ALGORITHMS UNDER CONSIDERATION display for
reconsideration.

NAVSWC TR 90-46

o REJECT FROM CONSIDERATION--this command will list the algorithms
contained in the ALGORITHMS UNDER CONSIDERATION display for the user
to reject. The rejected algorithms will be displayed in the
ALGORITHMS REJECIED display.

o RETURN TO MAIN MENU--this command will bring up EDA's top level menu.

o SELECT FOR CONSIDERATION--this command will select the algorithm in
the ALGORITHMS REJECTED display and reconsider it.

4.1.3.3 Candidate Assignment Panel. The Candidate Assignment Panel shown in
Figure 4-3 allows the user to do the following: view the displays of the
distribution and utilization of the allocation in bar chart form; display the
allocation on the terminal screen in text form; display the specific physical
or logical system individually; and print the allocation. In this version
there are five displays and twelve commands.

4.1.3.3.1 CANDIDATE ASSIGNMENT PANEL DISPLAYS. The following list describes
the Candidate Assignment Panel Displays:

o ASSIGNMENT TYPE--this display shows either the logical type or the
physical type.

o DISTRIBUTION OF ASSIGNMENT--this display will show the distribution
of the logical modules onto physical nodes in bar graph form.

o PHYSICAL UTILIZATION--this display will show the utilization of the
physical nodes in bar graph form.

o SINGLE CANDIDATE ASSIGNMENT--this display will show the allocation
mapping for the candidate appearing in the SINGLE CANDIDATE NAME
display.

o SINGLE CANDIDATE NAME--this display will show either the name of the
logical module when LOGICAL appears on the ASSIGNMENT TYPE display
or the name of the physical node when PHYSICAL appears on the
ASSIGNMENT TYPE display.

4.1.3.3.2 CANDIDATE ASSIGNMENT PANEL COMMANDS. The following list describes
the commands for the Candidate Assignment Display Panel:

©0 CANDIDATE ASSIGNMENT RESET--this command will reset the CANDIDATE
ASSIGNMENT panel to its initial state.

o DISPLAY ALL AT ONCE--this command will dump the allocation mapping
summary of both the physical system and the logical system onto the
output screen.

o DISPLAY ALLOCATION FOR A LOGICAL--this command will show the

allocation for the logical module whose name appears in the SINGLE
CANDIDATE NAME display via the SINGLE CANDIDATE ASSIGNMENT display.

4-10

NAVSWC TR 90-46

P AN ATIONS Bt s B

Imaege Pamel for Unit ALGORITHM APPLYER

PHYSICAL 1. Ll

CANDIDATES ASSIGNMENT RESET
SINGLE CANDIDATE NAML

AN-UYK-44-2

SINGLE CANDIDATE ASSIGNMENT

TRy

DISPLAY ALL AT ONCE

DISPLAY ONE AT A TIME

UPDATE DISTRIBUTION ASSIGNMENT

FASEETE N S T

UPDATE PHYSICAL ULTILIZATION

PRINT CANDIDATES ASSIGNMENT

DISFLAY ALLOCATION FOP A PHYSICTAL

HARDWARE NCDES

DISPLAY ALLOCATION FOR A LOGICAL

SELECT LOGICAL/PHYSICAL TYPE

MODULE.6
MODULE.10
MODULE.8

SO

2%

[3

SCREELN MENU

ENTER ALGORITHM APPLYER

ENTER SYSTEM CHARACTERIZATION

[EY LI B SLBEE e

ENTER HISTORIES SCREEN

CLOSE CANDIDATES ASSIGNMENT

HLEDWARE NCTED

FIGURE 4-3. CANDIDATE ASSIGNMENT
DISPLAY PANEL

o DISPLAY ALLOCATION FOR A PHYSICAL--this command will show the
allocation for the physical node whose name appears in the SINGLE
CANDIDATE NAME display via the SINGLE CANDIDATE ASSIGNMENT display.

o DISPLAY ONE AT A TIME--this command will show the allocation for
each logical module or each physical node appearing in the SINGLE
CANDIDATE NAME display, one at a time, via the SINGLE CANDIDATE
ASSIGNMENT display.

o PRINT CANDIDATE ASSIGNMENT--this command will print out a summary of
both the allocation of the logical system and the physical system.

NAVSWC TR 90-46

o SELECT LOGICAL/PHYSICAL TYPE--this command will toggle between
LOGICAL and PHYSICAL in the ASSIGNMENT TYPE display.

o UPDATE DISTRIBUTION ASSIGNMENT--this command will show the
distribution of the logical system onto the physical system via the
DISTRIBUTION OF ASSIGNMENT display in bar graph form.

o UPDATE PHYSICAL UTILIZATION--this command will show the utilization
of the physical system via the PHYSICAL UTILIZATION in bar graph
form.

4.2 EDA ENVIRONMENT

The EDA Environment consists of networks of computers and the

architecture that surrounds the networks. The EDA network, as currently
implemented (Figure 4-4), is distributed over two different types of
computers, Symbolics "and VAX, communicating via ethernet. Each of the
computers contains different components which are parts of EDA.

| APOLI”

. cAMWORK

~ ETHERNET = =3

FIGURE 4-4. EDA NETWORK

NAVSWC TR 90-46

4.2.1 Symbolics and Knowledge Engineering Environment

The hardware and software environments used to prototype EDA include the
Symbolics workstation and the Knowledge Engineering Environment (KEE), a
commercial expert system shell. 1In this version of EDA, the majority of the
system software resides on the Symbolics except for a part of the Algorithm
Library. The decision-aided mechanism for EDA was based on KEE which has an
object-oriented programming capability to capture EDA structure. Because of
its inherent properties, KEE provides a flexible environment for a throwaway
prototype.

4.2.2 VAX and Ada

The software residing on the VAX computer is part of the Algorithm
Library which is used by the RAA to determine the best possible candidate
allocations. The algorithms were implemented in Ada on the VAX.

4.3 EDA CAPABILITY

EDA is capable of allocating tasks to resources in order to satisfy the
system’'s requirements. For example, it takes tasks, such as software modules,
jobs, and objects, and allocates them to resources, such as networks of
computers, humans, and assembly robots, respectively. The toolset is useful
for systems engineers, systems analysts, human resource managers, etc. The
size and performance play a major role in allocation.

4.3.1 Allocations of Software Modules onto Hardware Resources

EDA can be used to analyze an existing configuration of a computer
intensive system. For example: Is the existing allocation of tasks for a
certain computer configuration "optimal"? It attempts to determine better
allocations for the system as a whole, given the user’s requirements for
performance, reliability, fault tolerance, and cost-efficiency.

EDA can also be used to analyze a new developing software intensive
system and determine an optimal configuration based on the requirements of the
system (such as hard and soft real-time reliability factors) before the
configuration is implemented. Knowing that the configuration must meet the
requirements of the system in advance reduces the cost and time of developing
such a system.

4.3.2 Size and Performance

EDA was designed with a highly robust framework and structure. It is
capable of supporting an extremely large implementation model as well as an
extremely large logical model. However, since the optimal solution to the
resource allocation problem is NP-hard (the solution to this type of problem
is highly computational complex, e.g., as the size of the problem increases,

4-13

NAVSWC TR 90-46

the computational complexity increases), the time it would take to determine
the optimal allocation would vary according to the size of the system and
would increase rapidly (exponentially).

4.4 EDA USAGE

In order to solve the resource allocation problem, the user begins the
RAA process which includes inputs, characterization, and allocation. The RAA
then proceeds to evaluation and assessment until the system requirement is
satisfied. 1In this prototype version, EDA presents the user with three main
panels: System Characterization Panel, Algorithm Applier Panel, and Candidate
Assignment Display Panel. The normal usage sequence is to start from the
System Characterization Panel, proceed to the Algorithm Applier Panel, and
then to the Candidate Assignment Display Panel.

4.4.1 RAA Process

The RAA process begins with the user inputting all the available
information and directions. The RAA then characterizes the inputs and
determines an allocation which will be evaluated by both the user and
simulation tools, iteratively, until the system’s requirements are satisfied
for assessment.

4.4.1.1 Inputs, Characterization, Allocation. The process shown in

Figure 4-5 begins with the user inputting all the requirements and information
available such as logical description, implementation resources, MOE and
environmental parameters. The RAA then characterizes them both individually
and as a whole and presents the characteristics to the user for verification
or modeling direction. The user may accept the characteristics analyzed by
the RAA or the user may choose to override certain attributes or certain
characteristics of the system. Based on the results of this process, the RAA
will select certain classes of rules that are most suitable to the problem
which will be used to reject both particular classes of algorithms and
individual algorithms. Finally, the RAA determines the most suitable
algorithm and presents it to the user for verification or modeling direction.
The user may accept the presented algorithm evaluated by the RAA, or the user
may choose to override it with another algorithm. Once an algorithm is
verified, EDA will apply it and present the candidate allocation to the user
for evaluation.

4-14

NAVSWC TR 90-46

RESOURCE ALLOCATION ADVISOR

Select Apply Assess

Characterization- - - ——---—— Algorithm Algorithm " Allocation

T s - \ .
EDA DATABASE EDARULES OS5 EDA ALGORITHMS D5 EDA ALLOCATION D8 SIM. & EVAL

Logical RULES LIBRARY ALGORITHMS ALLOCATION N)
Description : B .. LIBRARY . CANDIDATES _ _NATSAN

Implementation

Resources ADAS
~ MOES LIBRARY ' ' - I

Envifonmental - -
Parameters

Utility & others

FIGURE 4-5. RAA TOOL FUNCTIONALITY OVERVIEW

4.4.1.2 Evaluations and Assessment. Evaluation is done by simulating the
candidate allocation using Scientific and Engineering Software
(SES/Workbench), Architecture Design and Assessment System (ADAS), and Navy
Tactical Software Analyzer (NATSAN) simulation tools. These tools will
simulate the candidate assignment and produce the results for the user and the
RAA. The RAA then determines if the results of the allocation satisfies the
requirements. If the requirements are satisfied, allocation is assessed,
thereby completing the allocation of tasks to resources. However, if the
requirements are not satisfied, the RAA will reconsider other algorithms as a
feedback lesson, taking the failed allocation, failed classes of rules, and
{ailed classes of algorithms into account. This process is repeated until the
requirements are satisfied.

4-15

NAVSWC TR 90-46

CHAPTER 5

FUTURE PLANS AND DEVELOPMENT

The future plans for the EDA involve enhancing the methodology by
expanding and developing the following areas: structures, robustness, major
impact parameters, inference engine, RA tool, FDA tool, CGA tool, and Utility
tool. In addition, EDA architecture will be integrated with simulation and
Case tools to enhance its integrity and portability.

The EDA network will incorporate the Sun and Apollo computers to enhance
the portability and capability of EDA on different platforms.

5.1 METHODOLOGY ENHANCEMENTS AND DEVELOPMENTS

The methodology enhancements and developments will include (1) defining
new major impact parameters and (2) expanding and developing the RA, FDA, CGA,
and support methods and techniques.

5.2 FUTURE VERSION OF TOOLSET

From the lessons learned and experience gained during the development of
this version of the toolset, the future version will be developed on a more
standardized platform such as Sun. The decision-making mechanism part will be
developed using an expert system shell that is less dependent on the platform.
The enhancements will include interfaces to more standardized graphics systems
and relational data bases. This will enhance the capability of EDA and reduce
the transition cost effort.

The next generation prototype will be integrated with other simulation
and CASE tools such as NATSAN, ADAS, SES, and Teamwork. NATSAN, ADAS, and SES
will be directed by EDA to perform simulation (at different levels) of certain
candidate allocations and transmit the results to the user and EDA for
evaluation.

5.2.1 Continuation of Work

This effort will continue as part of the Engineering of Complex Systems
Technology Block Program. This program will address the design automation
problem in the context of large software intensive systems engineering. It
will enhance and validate the methods and tools developed under the IED
program. A user manual will be developed to facilitate utilization.

5-1

NAVSWC TR 90-46

BIBLIOGRAPHY

Bianchini, Jr., R. and Shen, J.P., "Interprocessor Traffic Scheduling
Algorithm for Multiple-Processor Networks," IEEE Transactions on
Computers, Vol. C-36, No. 4, Apr 1987.

Cvetanovic, Z., "The Effects of Problem Partitioning, Allocation, and
Granularity on the Performance of Multiple-Processor Systems," IEEE

Transactions on Computers, Vol. C-36, No. 4, Apr 1987.

Ibaraki, T., and Katoh, N., Resource Allocation Problems: Algorithmic
Approaches, MIT Press, Cambridge, MA, 1988.

Jamieson, L.H., Gannon, D., and Douglass, R.J., The Characteristics of
Parallel Algorithms, MIT Press,. Cambridge, MA, 1987.

Lee, S., and Aggarwal, J.K., "A Mapping Strategy for Parallel
Processing,” JIEEE Transactions on Computers, Vol. C-36, No. 4, Apr 1987.

Martin, J., and Oxman, S., Building Expert Systems: A Tutorial,
Prentice Hall, Englewood Cliffs, NJ, 1988.

Pearl, J., Heuristics: Intellipgent Search Strategies for Computer
Problem Solving, Addison-Wesley Publishing Company, Inc., Reading, MA,
1984,

Pearl, J., Probabilistics Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann Publishers, Inc., San Mateo, CA,

1988.
Peng, D., and Shin, K., "Modeling of Concurrent Task Execution In a

Distributed System for Real-Time Control," I1EEE Transactjons on
Computers, Vol. C-36, No. 4., Apr 1987.

6-1

NAVSWC TR 90-46

NOMENCLATURE

This nomenclature defines terms used in this report. A number of the
definitions incorporate acronyms which are defined as part of these terms.
Self-explanatory terms carry only the acronym.

Ada--a high level programming language mandated by DoD for embedded systems
that stresses modularity, reliability, and maintainability.

Algorithm Applier {(AA)--takes the algorithm given by the Algorithm Selector
and runs that algorithm to produce an allocation candidate for simulation.

Algorithm Applier Panel--allows the user to evaluate the algorithm recommended
by the Resource Allocation Advisor's Algorithm Selector.

Algorithm Selector (AS)--uses the classes of rules given by the Rules Selector
to reject certain classes of algorithms and select the most suitable algorithm
for the Algorithm Applier.

Analysis-Oriented--the class of algorithms that optimizes the resource
allocations by using certain analytical equations and rating schemes that are
selected for different criteria.

Anti-Submarine Warfare (ASW)

Candidate Allocation Evaluation--the evaluation process that determines if the
candidate allocation satisfies all the system’s requirements and Measures of
Effectiveness.

Candidate Assignment Display Panel--allows the user to do the following: view
the displays of the distribution and utilization of the allocation in bar
chart form, to display the allocation on the terminal screen in text form, to
display the specific physical or logical system individually, and to print the
allocation.

Computer Aided Software Engineering (CASE)--a software development tool used

by systems engineers to design, analyze, test, and implement systems.

Code Generation Advisor (CGA) Tool--analyzes the logical modules and

implementiation nodes and advises the Code Generator and the user on the
structure of programs to generate.

7-1

NAVSWC TR 90-46

NOMENCLATURE (Cont.)

Communjcation-Oriented--the class of algorithms that optimizes the resource
allocations by minimizing data volume communication traffic between logical
modules.

Computation-Oriented--the class of algorithms that optimizes the resource
allocations by load balancing on the system’s computational intensity.

Dynamic Priority Scheduling Base--the class of algorithms that optimizes the
resource allocations by scheduling tasks based on priorities which may change
during run-time.

Expert Design Advisor (EDA)--a decision aided toolset for use by systems

engineers in facilitating the development of large, complex systems involving
mission critical computing resources.

Environmental Parameters--the parameters that affect the behavior of the
system.

Fragmentation Decomposition Advisor (FDA) Tool--decomposes larger logical

modules into many smaller fragments based on the logical attributes and
characteristics.

Heuristic Algorithm--the class of algorithms that optimizes the resource
allocations by using information from past experience techniques and
probabilistic reasoning.

Hybrids--circuits fabricated by interconnecting smaller circuits of different
technologies mounted on a single substrate.

Independent Exploratory Development (IED)
Implementation Model Size--the magnitude of the resources topology.

Implementation Model Framework (or physical model framework)--designed in a
hierarchical structure to encapsulate all the physical properties, attributes,
and characteristics of the implementation model.

Inference Engine--the intelligent mechanism of the system.

Intelligent Probabilistic Reasoning--comprised of a collection of reasons and

rules collected and/or derived from textbooks, journals, tools, and
researchers. Uses different probabilistic distribution functions and voting
schemes.

Logical Model--designed in a hierarchical structure to encapsulate all the
logical properties, attributes, and characteristics of the system under
design.

Logical Model Complexity--the complexity of the logical model described by the
McCabe complexity equation.

7-2

NAVSWC TR 90-46

NOMENCLATURE (Cont.)

Logical Model Hard Real-Time--the hard dead-line of the logical system.

Logical Model Parallelism--the parallelism of the logical modules within the
logical model.

Logical Model Size--the magnitude of the logical model topology.

Logical System Attributes--the attributes that describe different aspects of
the logical system.

Logical System Characteristics--enumerated parameters that describe different
characteristics of the logical system.

Measures of Effectiveness (MOE)--are typically derived from the requirements
and other programmatic sources.

Mission Critical Computing Resources (MCCR)--the computing resources that
insure the survivability of the mission.

Mixed Analysis- and Simulation-Oriented--the class of algorithms that
optimizes the resource allocations by combining both analytical and simulation
orientations.

Mixed Computation- and Communication-Oriented--the class of algorithms that
optimizes the resource allocation by minimizing the data volume communication
traffic between logical modules and performs load balancing on the system's
computation intensity.

Naval Tactical Software Analyzer (NATSAN)--the software tool developed to
analyze the complexities of software systems.

Nonrandomized--the class of algorithms that optimizes the resource allocations
by using specific patterns of allocation schemes based on the specific
objective function(s).

Nonpreemptive Static Scheduling Base--the class of algorithms that optimizes
the resource allocations by scheduling tasks that are issued prior to run-time
with the condition that they cannot be discarded from the execution queue for
any reason.

Overall Model Complexity--the term that describes the complexity of both the
logical and implementation models.

Overall System Attributes--the attributes that describe different aspects of
both the logical model and implementation model.

Overall Model Parallelism--the dynamic of overall system parallelism.

Overall Model Size--the combination of both the logical and implementation
models’ size

7-3

NAVSWC TR 90-46

NOMENCLATURE (Cont.)

Physical Model Complexity--the connectivity of the physical components.

Physical Model Parallelism--the degree of physical components that can process
in parallel.

Physical System Attributes--the value of different properties of physical
systems,

Physical Model Hard Real-Time--the degree of hard real-time deadline.
Preemptive Static Priority Scheduling Base--the class of algorithms that

optimizes the resource allocations by scheduling tasks based on priorities
which are issued prior to run-time and with the condition that they can be
discarded from the execution queue if more important tasks need to be executed
first.

Program Description Language (PDL)--a structured pseudo code language used to

describe a program.

Randomized--the class of algorithms that optimizes the resource allocations by
using random allocation schemes based on the specific objective function(s).

Recomposition Advisor (RA) Tool--analyzes the logical (or implementation)

model’s characteristics and advises the user on recomposing the fragmentation
of modules (or nodes) into larger modules (or nodes) in order to satisfy the
requirements.

Resource Allocation Advisor (RAA) Tool--characterizes the logical and physical
models and uses other tools (i.e., Recomposition Advisor, Fragmentation and
Decomposition Advisor, and Code Generation Advisor) to recommend the best
possible allocation candidate based on the system's attributes and
characteristics in order to satisfy the system’'s requirements.

Rules Selector (RS)--analyzes and evaluates the problem to be solved by
characterizing the logical model, implementation model, measures of
effectiveness requirements, environmental parameters, and user modeling
direction, each separately and together as a whole.

SES/Workbench Tool--a tool used to simulate computer hardware and software
system’s behavior.

Simulation Oriented--the class of algorithms that optimizes the resource
allocations by using different simulation techniques and different levels of
accuracy that are selected for different criteria.

Spiral Model--depicts the use of preliminary risk analysis and prototypes
along with the standard development process.

7-4

NAVSWC TR 90-46

NOMENCIATURE (Cont.)

Static Scheduling Base--the class of algorithms that optimizes the resource
allocations by scheduling tasks prior to run-time and based on different types
of criteria.

Symbolics--a computer specializing in Artificial Intelligence.

System Characterjzation Panel--allows the user to evaluate characteristics of

the logical, physical, and overall logical and physical systems that are
characterized by the EDA’'s inference engine--and to verify if the
characteristics are satisfactory.

Teamwork--a CASE tool that automates standard structured methodologies using
interactive computer graphics and multi-user workstation power.

User Modeling Direction--comprises the specific tailoring directions from the
user in order to assist the intelligent system of EDA.

Utilicy Tool--a collection of routines that is used by the EDA prototype
toolset to manipulate and transport the inputs, outputs, and system
requirements.

VAX--a computer system developed by Digital Equipment Corporation.

VHSIC (Very High Speed Integrated Circuit)--a DoD program to develop new
generations of silicon integrated circuits that will provide higher
performance.

VLSI (Very Large Scale Integrated Circuit)

Waterfall Model--expresses a linear development process beginning with the
establishment of requirements and concluding with maintenance.

7-5

NAVSWC TR 90-46

APPENDIX

SAMPLE ALGORITHM

A-1/A-2

NAVSWC TR 90-46

SAMPLE ALGORITHM

A sample algorithm is provided for illustrating the optimization of
communication criteria.

DATA OPTIMIZATION ALGORITHM

The data optimization algorithm will optimize the resource allocations
by minimizing the data volume communication traffic between logical modules.
By optimizing the data communication alone, the performance of the system is
guaranteed to increase.

The algorithm consists of two main steps: characterization and
assignment mapping. Taken together, they determine the communication
intensity and reduce the communication traffic.

The data optimization algorithm is summarized in the algorithm outline.
Characterization

The characterization step determines the communication characteristics
(such as data volume) of the logical system and (such as data rates and data
latencies) of the physical system. In this algorithm, both the communication
characteristics of the logical modules and hardware nodes are classified as
data links. Each link contains two parts: the sending node or module and the
receiving node or module. The hardware links are ranked from fastest to
slowest. The software links are classified by data volume. Communication
channels that transfer more data are given a higher mapping priority.

Assignment Mapping

The assignment mapping step consists of strategies to minimize
communication traffic. 1t relies heavily on how the system is characterized.
Assignment mapping looks at how the system is classified by the
characterizations and assigns the software modules to the hardware nodes.

The assignment mapping attempts to assign the modules comprising the
largest data links to the nodes comprising the fastest data links. 1If
possible, it assigns the modules of a communication link to the same node.
This is favorable because the data transfer rate within a node is much faster
than the data transfer rate between two nodes. However, it is not always the
best method.

If every module were placed on the same processor, none of them could

run in parallel, and the target system would not work at its maximum
efficiency. Thus, it is necessary to limit the number of nodes that can be

A-3

NAVSWC TR 90-46

put on each processor. In this case, an even distribution is desired, so the
limit of modules on each node was restricted to the number of nodes divided by
number of modules, rounding up if the answer is not an integer.

Algorithm Outline

The algorithm outline summarizes the characterization step and the

assignment mapping step. This algorithm is coded according to the algorithm
outline below:

I.

II.

III.

Iv.

VI.

Create an ordered linked list of software links by data volume
(software characterization).

Create an ordered linked list of hardware links by data
transfer rate. (hardware characterization)

Create an unordered list of hardware nodes, with a field for
assigned software modules. (blank assignment list)

Create an unordered list of software modules, with a field
for assigned hardware nodes. (blank assignment list)

Determine the maximum number of modules to be on each node.
Begin mapping

A. Look at the largest software link
B. Are the two modules already mapped?

1. If yes, do nothing
2. 1If both are unassigned:

a. Find a node with room on it for two modules
b. Assign the modules to the node

3. If no node has room:

a. Find the fastest link with room on either side for a module
b. Assign the modules to the appropriate places on each link

4., T1f there are no open links, do nothing
C. 1If one module is assigned and the other is not:

1. Determine which module is unassigned (sender or receiver)
2. Map them:

a. Find the quickest data link with room for the unmapped
module in its appropriate node (either sender or receiver)
that contains the assigned module in its appropriate node
(either sender or receiver)

b. Assign module

NAVSWC TR 90-46

D. Repeat A-D until all software links have beer examined or until
everything has been mapped

E. Randomly map any unassigned modules.

NAVSWC TR 90-46

DISTRIBUTION

Copies

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 12

Library of Congress
Attn: Gift and Exchange Division 4
Washington, DC 20540

Naval Air Development Center
Attn: Code 7033
(Dr. C. Schmiedekamp)
(P. Zombori) 1
Warminster, PA 18974-5000

—

Office of Naval Technology
Attn: Code 227
(CDR J. Van Fossen) 1
800 N. Quincy Street
Arlington, VA 22217-5000

Center for Naval Analyses

4401 Fort Avenue

P.O. Box 16268

Alexandria, VA 22302-0268 2

United States Army
CECOM, C2NVEO
Attn: AMSEL/RD/VNT/TST
(H. Nguyen) 1
Fort Belvoir, VA 22060

Advanced Technology & Research Corp.

Attn: Adrien J. Meskin 5
Goerge Stathopoulos 1

14900 Sweitzer Lane

Laurel, MD 20707

Computer Command and Control Company
Attn: Evan Lock 1
2300 Chestnut Street, Suite 230
Philadelphia, PA 19103

(1)

University of Illinois

Attn:

Internal Distribution:

D4
E231
E232

I1 61801

E342 (GIDEP)

FO1l
F31
GO7
G42
G42
G42
G4?2
G42
G70
G72
H32
K02
K10
K12
K13
Kla
K4l
K51
K52
K52
K52
N15
N35
N35
N35
R&44
R44
R44

(W.
(F.
(T.
(A.
(J.
(E.
(J.
(D.
(H.
J.

J.
J.
(D.
(D.
(L.
(J.
(G.
(W.
(H.
(M.
(M.
(F.
(M.
(E.
(H.
J.

Laposata)
Moore)
Dumoulin)
Farsaie)
Moscar)
Ogata)
Youngblood)
Dorsey)
Parks)
Miller)

Sloop)
0'Toole)
Parks)
Clark)
Gross)
Smith)
Brooks)
Farr)
Huber)
Wilson)
Masters)
Riedl)
Zarin)
Cohen)
Szu)
Wingate)

Copies

Dept. of Computer Science
Dr. Jane W-S. Liu

Dr. Kwei-Jay Lin

1304 W. Springfield Ave.

Urbana,

P

el e N N S e e N e N el el el i e N e N S SR SR S VORI R

NAVSWC TR 90-46

R44 (J. Zien)

U

U02

U042

ulo0

U20

u3o

U3l

U302 (P. Hwang)
U33 (D. Choi)
U33 (M. Edwards)
U33 (K. Murphy)
U33 (N. Hoang)
U33 (S. Howell)
U33 (M. Jenkins)
U33 (T. Moore)
U33 (C. Nguyen)
U33 (T. Park)
U33 (H. Roth)
U33 (M. Trinh)
U33 (P. Wallenberger)
u40

— N
R e R e e R e o S T e e T e e

%]

—

(2)

REPORT DOCUMENTATION PAGE T o188

Public reporung burden tor this collection of information is estimated to ge | hour per response including the time for reviewing instructions, searching existing data
saurces, gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate of any other
aspact of ths collection of informauon, induding suggestions for reduung this burden, to Washington Headquarters Services, Directorste for information Operations and
Reports, 1215 jefterson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 1990
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Expert Design Advisor
6. AUTHOR(S)

Steven L. Howell, Phillip Q Hwang and Cuong M. Nguyen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORYT NUMBER
Naval Surface Warfare Center (U33)
10901 New Hampshire Avenue NAVSWC TR 90-46
Silver Spring, MD 20903-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report presents a methodology for the development of large, complex systems, such as Anti-
Submarine Warfare systems, involving next generation mission critical computing resources. This work
also demonstrates that the method is automatable using an artificial intelligence, expert system shell.
The methodology of this system optimizes the design structure and generates near-optimal allocations of
logical design objects onto physical implementations based on heuristic classes of rules, classes of
algorithms, sets of analytical equations, and sets of probabilistic reasoning.

14. SUBJECT TERMS [15. NUMBER OF PAGES
decision-aided toolset Mission Critical Computing Resources 6. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION [20. UMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
LURATHE AR B Standard form ev.

Prescribed by ANSI Std. 239-18
296102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Pa?e (RDP) is used in announcing and gatanFin
with the rest of the report, particularly

this information be consisten

reports. It is important that
the cover and its title page.

Instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including
day, month, and year, if available (e.g. 1 Jan 88).
Must cite at least the year.

Block 3. Type of Report and Dates Covered. State
whether reportis interim, final, etc. If applicable,

enter inclusive report dates (e.g. 10 Jun 87 -
30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the
part of the report that provides the most meaningful
and complete information. When a reportis pre-
pared in more than one volume, repeat the primary
title, add volume number, and include subtitle for
the specific volume. On classified documents enter
the title classification in pare itheses.

Block 5. Funding Numbers. To include contractand
grant numbers; may inclv se program element
number(s), project nur.per(s), task number(s), and
work unit numher{y) Use the following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Element Accession No.

BLOCK 6. Author(s). Name(s) of person(s)
responsible for writing the repoit, performing the
research, or credited with the content of the report.
If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report Number.
Enter the unique alphanumeric report number(s)

assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)
and Address(es). Self-expianatory.

Block 10. Sponsoring/Monitoring Agency Report
Number. (/f Known)

Block 11. Supplementary Notes. Enter information
not included elsewhere such as: Prepared in coop-
eration with...; Trans. of...; To be published in....
When a report is revised, include a statement
whether the new report supersedes or supplements
the older report.

Block 12a. Distribution/Availability Statement.

Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g
NOFORN, REL, ITAR).

DOD - Sec DoDD 5230.24, “Distribution
Statements on Technical Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2

NTIS - Leaveblank.

Block 12b. Distribution Code.

DOD - Leaveblank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leaveblank.

NTIS - Leaveblank.

Block 13. Abstract. Include a brief (Maximum 200
words) factual summary of the most significant
information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price code
(NTIS only)

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the abstract.
Enter either UL (unlimited) or SAR (same as report).
An entry in this block is necessary if the abstract is
to be limited. If blank, the abstract is assumed to
be unlimited.

Standard Form 298 Back (Rev. 2-89)

